分数的意义教案

欢迎阅读分数的意义教案(精选4篇),内容由多美网整理,希望对大家有所帮助。

分数的意义教案 篇1

课题一:(一)

教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

教学重点 理解。

教学用具 教材第84~85页有关的投影片、线段图等。

教学过程

一、创设情境

1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

3.揭示课题

在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

二、探索研究

1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

2、进一步认识单位1。

以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

(3)练习:说出下图中涂色的部分各占整体的几分之几。

● ●

●○○○○○ ● ●

●○○○○○ ● ●

● ○

● ○

● ○

3.揭示。

(1)观察以上教学过程 所形成的板书。

一个物体

计量单位 单位1

一些物体

告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

4.练习。练习十八第1、2、3题。

5.教学分数各部分名称、分数单位。分数的读、写法。

(1)教师任意写出几个分数,让学生说出分数各部分的名称。

(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

(3)认识分数单位,初步了解分数单位的特点。

练习:① 的分数单位是,它有个 。

② 的分数单位是,它有个 。

③个 是。

④ 是个 。

(4)想一想:读、写分数的方法是怎样的?

读作 ,表示 个 。

读作 ,表示有 个 。

三、课堂实践

1. 表示把平均分成份,表示这样的份的数。

2. 读作,分数单位是,再添上个这样的单位是整数1。

四、课堂小结

1、什么叫做分数?如何理解单位1?

2、什么是分数单位?分数单位有什么特点?

五、课堂作业

练习十八第5、6题。

课题二:(二)

教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

教学重点 理解。

教学过程

一、 创设情境

1.用分数表示图中阴影部分。

▲▲ ▲▲

△△ ▲▲

2.口答:什么是分数?如何理解单位1?

3.填空。

是个 。 的分数单位是

7个 是。 的分数单位是

二、揭示课题

出示学习内容及学习目标。板书课题:。

三、探索研究

1.认识用直线上的点表示分数。

分数也是一个数,也可以用直线(数轴)上的点来表示。

(1)认识用直线上的点表示分数的方法。

①画一条水平直线,在直线上画出等长的距离表示0、1、2。

②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

0 1 2

(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

①先画什么?再画什么?

②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

③ 应用直线上的哪一个点来表示?

(3)如果要在这条直线上表示分母是10的分数,该怎么办?

这条直线上0~1之间的第七个点表示的分数是多少?

2.练习。

(1)教材第87页下面做一做的第2题。

(2)用直线上的点表示 、 、 、 。

3.教学例1。

(1)指名读题,帮助学生理解题意。

(2)出示讨论题,同桌讨论。

①这题中把什么看作单位1?

②1人占这个整体的几分之几?

③5人占这个整体的几分之几?

(3)汇报讨论结果,板书答语。

(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

4、练习。教材第88页的做一做。

四、课堂实践

1.教材第87页的做一做。

2.用直线上的点表示 下面的分数: 、 、 、 、 。

3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

五、课堂小结

1.用直线上的点表示分数的方法是怎样的?

2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

六、课堂作业

练习十八第4、7、8题。

课题三:分数与除法的关系

教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

教学重点 理解和掌握分数与除法的关系。

教学用具 投影片(教材第89页的饼图)

教学过程

一、创设情境

1.填空。

(1) 表示。

(2) 的分数单位是,它有个这样的分数单位。

2.计算。(1)58 (2)49

二、揭示课题

我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

三、探索研究

1.教学例2

(1)读题后,指导学生根据整数除法的意义列出算式。板书:

13=

(2)讨论:1 除以3结果是多少?你是怎样想的?

(3)教师画出线段示意图,帮助学生理解。

1米

通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

(3)写出答语。

2.教学例3。

(1)读题后,引导学生列出算式:34。

(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

34=(块)。

由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

3、认识分数与除法的关系。

(1)引导学生观察13=、34=这两道算式,想一想:

①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?

②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)教师总结,学生发言,归纳出以下三点:

①分数可以表示整数除法的商;

②在表示整数除法的商时,要用除数作分母、被除数作分子;

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

分数与除法的关系可以表示成下面的形式:

板书:被除数除数=

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

板书:ab=(b0)

(4)想一想:这里的b能为0吗?为什么?

启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

(5)再想一想:分数与除法有区别吗?区别在哪里?

着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

4、学生阅读教材,质疑问难。

四、课堂实践

教材第91页中间的做一做。

五、课堂小结。

引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

六、课堂作业 。练习十九第1~3题。

课题四:分数与除法关系的'应用

教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

教学重点 求一个数是另一个数的几分之几的应用题。。

教学过程

一、创设情境

1.口答:30分米=米 180分=时

练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

2.说一说:分数与除法的关系?

3.用分数表示下面各算式的商。

(1)79(2)47(3)815(4)5吨8吨

二、揭示课题

这节课学习分数与除法关系的应用。(板书课题)

三、探索研究

1.出示例4。

(1)出示例4并审题。

(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

让全体学生尝试练习。

(3)集体订正。订正时让学生说说是怎样想的?

(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

重点说明当两数相除得不到整数商时,其结果可以用分数表示。

2.练习教材第91页下面的做一做。

3.教学例5 。

(1)出示教材第92页复习题,让学生独立列式解答。

集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

板书:3010=3

答:鸡的只数是鸭的3倍。

(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

讨论后师生共同评价,主要有两种方法:

①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

(3)比较复习题与例5异同点。

通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

4、练习。教材第92页做一做第1、2题。

四、课堂实践

1.在括号里填上适当的分数。

8厘米=米 146千克=吨 23时=日

41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

2.五(1)班有女生25人,比男生多4人。

(1)男生占全班人数的几分之几?

(2)女生占全班人数的几分之几?

(3)男生人数是女生人数的几分之几?

五、课堂小结

1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

2、求一个数是另一个数的几分之几应用题的解答方法是什么?

六、课堂作业

练习十九第4~7题。

七、思考题。

练习十九第8题及思考题。

课题五:分数大小的比较

教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

教学重点 掌握比较分数大小的方法。

教学用具 投影片(教材例6、例7直观图)

教学过程

一、创设情境

1.教材第93页复习题,请一名学生口答。

2.看图写分数,并比较分数的大小。

0 1

二、揭示课题

以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

三、探索研究

1.同分母分数的大小比较。

(1)比较 和 的大小。

出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

如果没有直观图,该怎样比较 与 的大小呢?

因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

(2)用类似的方法引导学生比较 和 的大小。

(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

板书:分母相同的两个分数,分子大的分数比较大。

2.练习:教材第93页做一做。

3.同分子分数的大小比较。

(1)比较 和 的大小。

①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

(2)比较 和 的大小。

用类似的方法进行比较并得出结论: < 。

(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

板书:分子相同的两个分数,分母小的分数比较大。

4、练习:教材第95页的做一做。

四、课堂小结

比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

五、课堂实践

1.练习二十第1题。

2.练习二十第3题。

六、课堂作业

练习二十第2、4题。

七、思考练习

在括号里填上合适的数

< < < > >

分数的意义教案 篇2

分数的意义教案汇编十篇

作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?以下是小编精心整理的分数的意义教案10篇,仅供参考,大家一起来看看吧。

分数的意义教案 篇3

教学目标

(1)使学生进一步掌握通分和分数大小比较方法,进一步理解分数基本性质。

(2)培养学生收集信息的能力,并运用所学的饿知识正确地解决一些实际问题。

教学重点、难点

重点、难点:通分和分数大小比较方法。

教具、学具准备

教 学过程

一、基本训练

1、通分。(口答)

1/2和1/31/5和1/41/6和3/42/3和1/612/7和5/63/8和5/6

2、比较下列每组中分数的大小。

6/11和17/335/14和8/212又7/12和2又8/53/10、7/20和11/30

5又2/3、5又5/6和5又19/20

根据学生的饿错误进行有针对性的饿讲评。

二、运用训练

1、生活中有很多地方也要用到分数大小的比较。你收集了,吗?

2、学生反馈。(课前老师检查并反馈到黑板上)

3、老师也收集了一些:出示第103页第4题。

反馈讲评。

4、课堂作业:练习第103页第5、6题。

讲评作业。

三、深化训练

1、出示:做同样的一批零件,王师傅4分钟做7个,张师傅5分钟做8个,李师傅3分钟做5个。哪一位师傅是老师傅?

反馈:写出具体的比较过程。

引导学生发表不同的意见:速度快的并不一定是老师傅,因为老师傅已经老了;但速度快的一定是老师,因为老师的技术熟练。

2、指导思考题:写出比1/3小但比1/4大的分数。

你是怎样解答的'?

四、课堂

五、作业

1、课本第103页第3、4题中剩下的题目。

2、《作业本》

应用分数大小的比较方法比较几个具体数量的大小,在比较时,单位名称不能漏掉;重视思考题教学,开拓学生的思路,让学生懂得两个分数之间有无数个分数。

分数的意义教案 篇4

分数的意义

1、进一步认识分数,发展数感,体会数学与生活的密切联系

2、进一步体会“整体”与“部分”的关系

3、理解有关单位“1”的数学内涵,进而揭示分数的意义,认识分数单位伯含义。 认识分数的意义,体会整体与部分的关系

观察分析,比较法,小组交流学习法

主题图的放大图,学生自备20根小棒

一课时

一、创设情境

(1)展示主题图

(2)让学生说出从图中获取的主要信息

(3)揭示课题

二、师生共同探究新知

(一)再创情境,探案例1

1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)

他告诉我们什么?我分得这个月饼的1/4

谁能告诉大家,这里的`1/4是把()看作一个整体呢??

2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的1/4是把什么看作一个整体呢?

分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈

(二):教学单位“1”、分数意义和分数单位

1、关于单位“1”

学生小组交流“议一议”

师让学生小组“议一议”的3个情境,全班反馈(师对应板书)

归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)

2、关于分数的意义

理解了什么是单位1的量,我们进一步认识分数的意义

学生活动:(小组合作)拿出一些小棒,把它看作单位1

使它能平均分成5份,6份??

情况反馈

归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数

说一说,议一议,上面分数的实际意义

课堂活动:说一说生活中的分数;画一画(书上的第2题)

3、关于分数单位的认识

把单位“1”平均分成若干份,表示这样一份的数,又叫做这个分数的单位。 让学和举例说一说:

再议一议:分数单位与分数什么有关系?(分母)

三、全课总结

1、反思与质疑

本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。

2、还有什么疑惑的,或者有什么不同的想法?

师生共同梳理

单位“1”——分数——分数单位

四、布置作业

课本第25~26页1、2、3题

分数

单位“1”:??

分数的意义:??

分数单位:??

单位“1”——分数——分数单位

大家都在看