三年级数学上册知识点总结

欢迎阅读三年级数学上册知识点总结(精选6篇),内容由多美网整理,希望对大家有所帮助。

三年级数学上册知识点总结 篇1

一、位置与方向

1、东与西相对,南与北相对,

东南与西北相对,西南与东北相对。位置是相对的,不是绝对的。判断位置时现要弄清楚是以谁为标准。

2、地图通常是按上北、下南、左西、右东来绘制的。

二、除数是一位数的除法

1、一位数除整十、整百、整千数的口算

(1)利用“表内除法计算”

(2)想乘算除

2、一位数除几百几十几数或几千几百数的口算

(被除数前两位能被一位数整除时)用被除数的前两位除以一位数,在得数的末尾添上与被除数末尾同样多的0。

3、口算时的注意事项

(1)0除以任何数(0除外)都等于0;

(2)0乘以任何数都得0;

(3)0加任何数都得任何数本身;

(4)任何数减0都得任何数本身。

4、笔算除法的顺序:确定商的位数,试商,检查,验算

5、一位数除两、三位数的笔算方法

先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。

6、除法的验算方法

没有余数的除法的验算方法:商×除数=被除数

有余数的除法的验算方法:商×除数+余数=被除

7、三位数除以一位数的估算方法

除数不变,把三位数看成几百几十数或整百数,再用口算除法的基本方法进行计算。

三、年、月、日

1、经过的天数的计算

结束时间—开始时间+ 1

2、计算经过时间,就是用结束时刻减开始时刻

结束时刻-开始时刻=时间段(经过时间)

3、时间与时刻的区别

时间是一段,时刻是一个点

四、两位数乘两位数

1、口算乘法

(1)两位数乘一位数的口算

把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加。

(2)整百整十数乘一位数的口算

先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。

先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。

(3)两位数乘整十数的口算

先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个0。

2、笔算乘法

先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。

五、小数的初步认识

1、小数的意义

像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。

2、小数的认、读、写

限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分,按顺序依次读出每一位上的数字,有几个0就读几个零。

3、比较两个小数的大小

先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

4、计算小数加、减法

小数点对齐,也就是相同数位对齐,再按照整数加、减法的计算方法进行计算,最后在得数里点上小数点,使它与横线上的小数点对齐。

练习题

1、看图填一填。

(1)儿童公园在城市广场的(东北)面,商场在城市广场的(西北)面。

(2)朝阳小区在城市广场的(北)面,在工商银行的(东北)面。

(3)实验小学在城市广场的(南)面,在电影院的(西南)面,在工商银行的(东南)面。

【分析:在用方位词描述一个物体的具体位置时,要弄清楚主语是谁,谁作为“标准”存在。在理解题目时,对于像2、3小题这种由两句话组成的问题,在填写后半句时,更要确认好主语是谁。在做题时可以边读题,边标示出标准是谁,并画出方向箭头,再根据箭头得出方向。】

2、黄昏,当你面对太阳时,你的后面是(东)面,左面是(南)面,右面是(北)面。

【分析:在确定方位时,如果遇到和熟悉的“上北下南左西右东”不同的情况时,可以通过画图的方法帮助理解。在本题中要明白“黄昏,当你面对太阳时”,面朝的方向是西面,以此信息为起点,画出其它的方向。】

3、有84朵花,每4朵花扎1束,可以扎多少束?平均每人送2束,这些鲜花大约可以送给多少人?

84÷4=21(束)

21÷2=10(人)……1(束)

答:每4朵花扎1束,可以扎21束。平均每人送2束,这些鲜花大约可以送给10人。

【分析:要仔细阅读题目,理解“大约”的含义,可以采用划一划、圈一圈等方式弄清题意。要注意到“每4朵扎一束”,“平均每人送2束”,这两种方法的不同。】

4、参观科技馆的成人人数是儿童的2倍,如果一共有456人参观,儿童有多少人?

456÷(1+2)=152(人)

答:儿童有152人。

【分析:应用题最关键是理解数量之间的关系,而理解倍数关系句又是解答倍数应用题的关键。画线段图可以帮助理清数量关系。】

5、制作每只蝴蝶标本需10分钟。李老师:“我6天制作了12盒蝴蝶标本。”已知每盒蝴蝶标本有5只。

(1)李老师平均每天制作蝴蝶标本多少只?

12×5÷6=10(只)

答:李老师平均每天制作蝴蝶标本10只。

(2)李老师在这6天中制作标本花了多少时间?

12×5×10=600(分)

答:李老师在这6天中制作标本花了600分钟。

【分析:一般出现的“多余信息”和“隐藏信息”都比较明显,比较容易辨别。但在这一练习中的信息都是相关的,只是在解决不同的问题时成了“多余信息”,因此会对学生产生比较大的干扰。首先要弄清楚每一小问中的数量关系,再选择需要的信息来进行解题。】

6、一场排球赛,从19时30分开始,进行了155分钟。比赛什么时候结束?

155÷60=2(时)…35(分)

19时30分+2时35分=22时5分

答:比赛22时5分结束。

【分析:在解答此类关于时间的问题时,要能熟练地运用时、分、秒之间的关系进行换算。1小时=60分,1分=60秒。在得到结果后要注意检查是否符合实际情况,避免出现21时65分这样的错误。】

7、阳阳晚上9时睡觉,第二天早上6时起床,他一共睡了几个小时?

晚上9时=21:00

早上6时=6:00

24:00-21:00=3(时)

6:00-0:00=6(时)

3+6=9(时)

答:他一共睡了9个小时。

【分析:解决此类与时间相关的问题时要联系实际,明白晚上12:00是两天的分界线。在解题时可以利用钟面,化抽象为具体,掌握最基础的计算方法。利用手中的钟面模型,自己动手拨一拨,找准开始和结束的时刻,再数一数中间相隔几大格就是经过几小时。也可以采用画线段图的方法进行分段计算。画线段图如下:】

8、

56×14=784(元)

答:一共卖了784元。

【分析:要弄清楚数量关系。要解决“一共卖了多少钱”需要知道卖了多少套和每套的价格,这样就不会被多余信息误导。在计算时,要多想一想自己写的每一步算式在计算什么,有什么含义,这样也可以帮助我们避免出错。】

9、一根钢丝长72.6米,比另一根短0.8米,另一根钢丝长多少米?

72.6+0.8=73.4(米)

答:另一根钢丝长73.4米。

【分析:已知一个数比另一个数少多少,求另一个数,用减法计算。在列竖式计算时要注意,小数点要对齐。】

三年级数学上册知识点总结 篇2

1、有4条直的边和4个角的封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:①对边相等、对角相等。

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式:

长方形的周长=(长+宽)×2

变式:①长方形的长=周长÷2—宽

②长方形的宽=周长÷2—长

正方形的周长=边长×4

变式:正方形的边长=周长÷4

数学圆的周长知识点

环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的.周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。

小学数学简便计算知识点

1、连加的简便计算:

①使用加法结合律(把和是整十、整百、整千的数结合在一起)

②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

2、连减的简便计算:

①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)

②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74

3、加减混合的简便计算:

第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38 146—78+54=146+54—78

4、连乘的简便计算:

使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;

5、连除的简便计算:

①连续除以几个数就等于除以这几个数的积。

②除以几个数的积就等于连续除以这几个数。

6、乘、除混合的简便计算:

第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的应用:

①类型一:(a+b)×c(a—b)×c= a×c+b×c = a×c—b×c

②类型二:a×c+b×c a×c—b×c=(a+b)×c =(a—b)×c

③类型三:a×99+a a×b—a= a×(99+1)= a×(b—1)

④类型四:a×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2

三年级数学上册知识点总结 篇3

有余数的除法

1、余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:指整数除法中被除数未被除尽部分。例如27除以6,商数为4,余数为3。

2、余数的性质:余数有如下一些重要性质(a,b,c均为自然数)

(1)余数小于除数。

(2)被除数=除数×商+余数

除数=(被除数—余数)÷商

商=(被除数—余数)÷除数

余数=被除数—除数×商。

3、有余数除法的含义:通过平均分一些物体,有时有剩余,就出现了余数。

如:一共有23盆花,每组摆5盆,最多可以摆几组,还多几盆?

23÷5=4(组)……3(盆)

其中,被除数23,除数5,商4,余数3

4、余数与除数的关系:

在有余数的除法中,每一次除得的余数必须比除数小。(余数<除数)

如:23÷5=4……3,其中(余数3<除数4)

5、除法各部分之间的关系:

被除数=商×除数+余数

或被除数=商×除数

可能性

1、不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。

2、请用“一定、可能、不可能”来说一说。

①一定:太阳一定从东边升起,月亮一定绕着地球转,地球一定每天都在转动,每天一定都有人出生,人一定要喝水……

②可能:三天后可能下雨,花可能是香的,明天可能有风,下周可能会考试。

③不可能:太阳不可能从西边升起,地球不可能绕着月亮转,鲤鱼不可能在陆地上生活。

三年级数学上册知识点总结 篇4

一、时分秒

1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长

2、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

6、公式。(每两个相邻的时间单位之间的进率是60)

1时=60分;1分=60秒;60分=1时;

7、常用的时间单位:时、分、秒、年、月、日、世纪等。

1世纪=100年,1年=12个月

二、分数的初步认识

1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、比较大小的方法:

①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。

4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

三、测量

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

3、在计算长度时,只有相同的长度单位才能相加减。

4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

6、相邻两个质量单位进率是1000。

1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

四、万以内的加法和减法

1、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

2、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

5、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

五、倍的认识

1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

六、长方形和正方形

1、有4条直的边和4个角封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:①对边相等、对角相等。②平行四边形容易变形。(三角形不容易变形)7、封闭图形一周的长度,就是它的周长。

8、公式:长方形的周长=(长+宽)×2或长×2+宽×2长方形的长=周长÷2—宽长方形的宽=周长÷2—长正方形的周长=边长×4正方形的边长=周长÷4

七、多位数乘一位数

1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

2、

①0和任何数相乘都得0;

②1和任何不是0的数相乘还得原来的数。

3、三位数乘一位数:积有可能是三位数,也有可能是四位数。

4、多位数乘一位数(进位)的笔算方法:

相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

5、一个因数中间有0的乘法:

②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

7、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

8、减法的验算方法:

①用被减数减去差,看结果是不是等于减数

②用差加减数,看结果是不是等于被减数。

9、加法的验算方法:

①交换两个加数的位置再算一遍。

②用和减一个加数,看结果是不是等于另一个加数。

三年级数学上册知识点总结 篇5

一、填空。

1、常见的长度单位有()()()()()。

2、常见的重质量单位有()()()。

3、1只大象重约4()。

4、一台拖拉机可以装货物1()。

5、直尺上从0到1的这一段长度是()厘米。把这一段长度平均分成10小格,每小格的长度是()毫米。

二、判断题。

1、飞机每小时飞行800千米。()

2、8千克=8000吨。()

3、一头猪重135千克。()

4、一袋大米重50千克,20袋大米重1吨。()

5、40毫米与4分米同样长。()

三、选择。

1、李平的身高146()。

a、米

b、分米

c、厘米

2、回形针的长度是28()。

a、厘米

b、毫米

c、分米

3、一本书大约重150()。

a、克

b、千克

c、吨

4、一袋大米重10()。

a、克

b、千克

c、吨

5、比较下面的`重量,最重的是()。

a、5吨500千克

b、5900千克

c、5550千克

四、在括号里填上适当的单位。

1、一个鸡蛋重50()。

2、汽车每小时行80()。

3、一辆货车载重4()。

4、一头牛重约200()。

5、跑步每秒钟约8()。

6、1袋水泥重约50()。

7、小明的身高是146()。

8、小宇的体重是32()。

9、数学课本长约2()。

10、标准运动场跑道一圈是400()。

五、解决问题。

1、一只蜗牛从24厘米深的杯底往上爬,每爬6厘米要用3分钟,然后停2分钟。问:蜗牛从杯底爬到杯口要用多少时间?

2、某学校的学生进行__训,在晚上的行__中,二班步行了2100米,一班比二班要多行160米,那么一班和二班共行__多少米?

3、一段16米长的布带,每次剪去2米,剪了5次后,还剩多少米?

4、一头大象重6吨,一头牛重400千克,一头大象比一头牛重多少千克?

5、一根木料在24秒内被切成了4段,用同样的速度切成5段,需要多少秒?

三年级数学上册知识点总结

1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

量比较长的物体,常用米(m)做单位。

量比较长的路程一般用千米(km)做单位。

2、运动场的跑道,通常1圈是400米,2圈半是1000米。

3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

5、1厘米中间的每一小格的长度是1毫米。

6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

8、常用长度单位:米、分米、厘米、毫米、千米。

9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。

1米=10分米,1分米=10厘米,1厘米=10毫米

1米=100厘米1千米(公里)=1000米

10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。

1吨=1000千克1千克=1000克

三年级数学上册知识点总结 篇6

第一单元混合运算

知识点一、

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

知识点二、

关于“0”的运算

1、“0”不能做除数;

字母表示:a÷0错误

2、一个数加上0还得原数;

字母表示:a+0=a

3、一个数减去0还得原数;

字母表示:a-0=a

4、被减数等于减数,差是0;

字母表示:a-a=0

5、一个数和0相乘,仍得0;

字母表示:a×0=0

6、0除以任何非0的数,还得0;

字母表示:0÷a(a≠0)=0

7、0÷0得不到固定的商;5÷0得不到商.

第二单元观察物体

1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。

2、总结:同一立体图形从不同角度观察会有不同的形状。

第三单元加与减

第一节捐书活动

知识点:

1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。

2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

第二节运白菜

1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。

2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

第三节节余多少钱

三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。

第四节里程表(一)

1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。

2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。

第五节里程表(二)

1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数

2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。

第四单元乘与除

第一节小树有多少棵

知识点:

1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。

2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。

3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。

4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。

第二节需要多少钱

知识点:

1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。

2、计算混合运算时,要先明确运算顺序,再计算。

第三节丰收了

知识点:1、整十数除以一位数的口算方法:

(1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。

(2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。

2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。

第四节植树

知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。

2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。

第五单元周长

知识点1:什么是周长

1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。

2、不规则物体或图形的测量方法:绳子测量法。

3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。

知识点二:长方形的周长

1、求长方形的周长必须满足两个条件:已知长和宽的长度。

2、长方形周长的计算方法:

(1)长方形的周长=长+宽+长+宽

(2)长方形的周长=长×2+宽×2

(3)长方形的周长=(长+宽)×2

(4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”

(5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”

3、正方形周长的计算方法:

(1)可以把4条边长加起来;

(2)用一条边长乘以4,即正方形的周长=边长×4

4、靠墙围成的长方形有两种情况:

(1)长边靠墙,

(2)宽边靠墙。

5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。

第六单元乘法

第一节蚂蚁做操

知识点:

1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。

2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。

第二节去游乐园

知识点:

1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。

2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。

第三节乘火车

知识点:

1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。

2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。

第四节去奶奶家

知识点:

借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。

第五节:0×5=?

知识点:

1、0和任何数相乘都等于0。

2、一个乘数末尾有0的乘法的计算方法:

(1)先用这个乘数0前面的数乘另一个乘数;

(2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.

3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。

4、结论:

(1)因数的末尾有0,乘积中一定有0。

(2)因数的中间有0,乘积中不一定有0。

第六节买矿泉水

知识点:

1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。

2、连乘的运算顺序:按从左到右的顺序依次计算。

3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。

第七单元年月日

第一节看日历(一)

知识点:

1、一年有12个月。

2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。

3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个

第二节看日历(二)

知识点:

1、2月29日是个特殊的日子,只有4年才出现。

2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。

3、认识平年和闰年:

(1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。

(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.

(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。

(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。

365÷7=52(个)......1(天)

366÷7=52(个)......2(天)

4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。

第三节一天的时间

知识点:

1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。

2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,

3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。

4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。

5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。

第四节:时间表

知识点:1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的'进程活动。

2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。

3、判断谁跑得快,只要看谁用的时间短就可以了。

第五节数学好玩

知识点:

1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。

2、地面上一定范围内的直线距离可以直接用直尺来测量。

3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。

4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。

5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。

第八单元认识小数

第一节文具店

知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。

2、小数由整数部分、小数点、和小数部分组成。

3、一个小数的小数部分有几位数,它就是几位小数。

4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。

5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。

6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。

7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。

第二节货比三家

知识点

1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。

2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。

第三节存零用钱

知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

第四节寄书

1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。

第五节能通过吗

1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。

2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。

3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。

大家都在看