欢迎阅读有理数的乘方教案(精选5篇),内容由多美网整理,希望对大家有所帮助。
有理数的乘方教案 篇1
教学目标
1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)
2.能将用科学记数法表示的数还原为原数.(重点)
教学过程
一、情境导入
在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.
如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.
生活中,我们还常会遇到一些比较大的数.例如:
1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.
2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.
3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.
像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?
二、合作探究
探究点一:用科学记数法表示大数
例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()
A.167×103 B.16.7×104
C.1.67×105 D.1.6710×106
解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.
方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()
A.9.34×102 B.0.934×103
C.9.34×109 D.9.34×1010
解析:934千万=9340000000=9.34×109.故选C.
方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.
探究点二:将用科学记数法表示的数转换为原数
例3 已知下列用科学记数法表示的`数,写出原来的数:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.
三、板书设计
科学记数法:
(1)把大于10的数表示成a×10n的形式.
(2)a的范围是1≤|a|<10,n是正整数.
(3)n比原数的整数位数少1.
教学反思
本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.
有理数的乘方教案 篇2
教学目标
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;
3.会用科学记数法表示较大的数.
教学重点
1.有理数乘方的意义,求有理数的正整数指数幂;
2.用科学记数法表示较大的数.
教学难点
有理数乘方结果(幂)的符号的确定.
教学过程(教师)
问题引入
手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?
乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
有理数的乘方:同步练习
1.对于式子(-3)6与-36,下列说法中,正确的是()
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相等
D.它们的意义不同,结果也不相等
2.下列叙述中:
①正数与它的绝对值互为相反数;
②非负数与它的绝对值的'差为0;
③-1的立方与它的平方互为相反数;
④±1的倒数与它的平方相等.其中正确的个数有()
A.1B.2C.3D.4
有理数的乘方教案 篇3
三维目标
一、知识与技能
掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
二、过程与方法
通过例题学习,发展学生观察、归纳、猜想、推理等能力。
三、情感态度与价值观
体验获得成功的感受、增加学习自信心。
教学重、难点与关键
1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。
2.难点:灵活应用运算律,使计算简单、准确。
3.关键:明确题目中各个符号的意义,正确运用运算法则。
四、课堂引入
1.我们已经学习了哪几种有理数的运算?
2.有理数的乘方法则是什么?
五、新授
下面的'算式里有哪几种运算?
3+5022(-)-1 ①
这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?
有理数的混合运算,应按以下运算顺序进行:
1.先乘方,再乘除,最后加减;
2.同级运算,从左往右进行;
3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:计算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:观察下面三行数:
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行数按什么规律排列?
(2)第②、③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。
有理数的乘方教案 篇4
一、教材分析:有理数的乘方是人教版七年级上册数学第一章的内容,在有了小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。乘方贯穿初中数学的始终,对整个初中学习十分重要。通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。
二、教学目标:
(一)知识技能目标:
1、正确理解乘方、幂、指数、底数等概念。
2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。
3、能快速、准确地进行有理数的乘方运算。
(二)过程与方法:
1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。
2、通过乘方运算的运用,培养学生的逻辑思维能力。
(三)情感目标
1、通过创设问题情境,激发学生学习数学的兴趣。通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。
2、向学生渗透探索、归纳的数学思想及数学的简洁美。
3、培养学生协作精神,体验数学的探索与创造的快乐。
三、教学重点:正确理解乘方的意义,掌握乘方的运算方法。
四、教学难点:有理数乘方运算中符号的确定。
五、教学方法:
(1)创设问题情境,从生活实践入手,体现生活中的数学。
(2)探索归纳,学生总结结论。
(3)精讲多练,提高学生运用知识的能力。
(4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。
六、设计思想:通过人体细胞分裂创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的实例拉面和珠穆朗玛问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。对新知的运用采用精讲多练的形式,把课堂交给学生,使他们在练习中发现问题,解决问题,从而实现知识掌握与运用形成能力。为了及时反馈信息,设计了课堂检测以闯关比赛形式,激发学生的参与意识,提高学生应用知识的能力,最后结合作业与数学故事《阿凡提》,向学生渗透数学文化,展示数学的神奇美。
七、教学过程:
(一)回顾思考
回顾有理数的乘法法则,思考边长为5的正方形的面积是,棱长为5的立方体的体积是。
设计题图:从学生已有基础入手,循序渐进,为探究新知做好铺垫。
(二)情境引入
1个细胞30分钟后分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?
要想解决此题,通过今天的学习就能做到,下面我们一起来学习有理数的乘方。
板书课题:有理数的`乘方
设计意图:(1)以人体自身结构特点创设问题情境,设置疑问,激发学生的学习兴趣。
(2)让学生产生惊奇,进而激发他们的求知欲,迫切欲揭开乘方运算的神秘面纱。
(三)观察发现:启发引导,探索规律,得出概念。
形式记作读作
a a
a×a
a×a×a
a×a×a×a
a×a×…×a
观察其中都含有哪些运算,这些式子的因数有什么特点?
乘方的定义及有关概念:(新知归纳)
1、乘方的定义:求n个相同因数的乘积的运算叫做乘方,乘方的结果叫做幂。
2、乘方的表示法:
读作:a的n次方或a的n次幂,也读作a的平方,也读作a的立方。
(四)学以致用
例1(1)(-3)×(-3)×(-3)×(-3)×(-3)可以记为____
(2)在(-3)2中,底数是____,指数是____。
(3)在-32中,底数是____,指数是____。
议一议:-32与(-3)2有什么不同?结果相等吗?然后要求学生指出它们的区别。
例2:计算
分析:①先引导学生分别指出它们的底数和指数;(找)
②按照乘方的定义将它化为熟悉的乘法运算;(化)
③运用乘法法则运算。(算)
老师引导(1)小题,归纳步骤;学生尝试自己动手求解其他几个,最后师生共同评析完善。
注意:(1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来。这也是辨认底数的方法
(2)分数的乘方,在书写的时一定要把整个分数用小括号括起来。
(五)探索交流
例3计算:
(1)102,103,104,105,;
(2)(-10)2,(-10)3,(-10)4(-10)5 。
观察例3的结果,你能发现什么规律小组讨论
1。正数的任何次幂都是正数;
负数的奇次幂是负数,
负数的偶次幂是正数
2。 10n等于1后面加n个0
(六)小结练习
乘方是求n个相同因数a的积的运算
运算加减乘除乘方
结果和差积商幂
注意:
(1)乘方与加、减、乘、除一样是一种运算
(2)幂是乘方运算的结果,如和、差一样
测评练习:
1、写出下列各幂的底数与指数:
(1)在74中,底数是___,指数____;
(2)在a4中,底数是___,指数是____;
(3)在(—6)5中,底数是___,指数是______;
(4)在—25中,底数是____,指数是____;
根据上面练习的表你觉得幂的符号与底数指数有关吗?你发现有什么变化规律吗?
2、如果:x2=64,x是几?x3=64,x是几?
3、(-1)n当n偶数时,结果为___
当n奇数时,结果为___
(—1)20xx-(-1)20xx=___
注意:①对于乘方运算,先要学生确定幂的符号,再运算。
②对于1和—1的正整数次幂的运用加以强调。
设计意图:
(1)解题过程规范化,面向全体,照顾中下学生。
(2)加深巩固概念,理解乘方的意义,熟练地进行乘方运算体会成功的感觉。
考考你:一个数的平方为144,这个数是________
一个数的平方是0,这个数是________
一个数的平方为它本身,这个数是_______
一个数的立方为它本身,这个数是________
设计意图:
(1)让学生通过比较加深理解,掌握乘方的意义。
(2)让学生通过练习讨论并争执后理解乘方的各个概念,培养学生思维的严谨性。
(3)通过闯关及时反馈,培养学生的竞争意识。
(七)生活与数学
1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。
这样捏合到第_______次后可拉出256根面条。
2、珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。这是真的吗?
设计意图:选取生活实例,展示数学与现实生活的紧密联系。
(八)乘方的故事
1、巴衣老爷说:你能每天给我10元钱,一共给我20年吗?阿凡提说:尊敬的巴衣老爷,如果你能第一天给我1毛钱,第二天给我2毛钱,第三天给我4毛钱,以此类推,一直给20天,那我就答应你的要求!巴衣老爷眼珠子一转说:那好吧!亲爱的同学们:你知道阿凡提和巴衣老爷谁得到的钱多?
2、有一个长工到一个财主家去做工,他和财主商定:“第一天给一分钱,第二天给两分钱,以后每天是前一天的平方。”财主答应了,到月底(30天)后,你猜一猜:财主会给长工多少钱?
设计意图:及时巩固所学内容,通过数学故事,渗透数学文化,展示数学的神奇美。
八、教学评价与反思
本节课的教学设计是以人教版教材和新课程标准为依据,结合农村地区学生的实际情况,总体上采取教师创设问题学生合作交流与自主探索师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合农村地区学生的认知规律,使学生易于接受。
教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。
成功之处:
成功之一:用学生刚学过的生物学中人体细胞分裂创设了一个有趣的问题情境。一下就贴近了学生的心灵,激起了同学们强烈的的求知欲望。
成功之二:以拉面的故事进一步让学生感受乘方意义的实例,在计算过程中培养了学生的合作意识、观察能力与分析数据能力,同时体会数学来源于生活,增强学生学好数学的决心。
成功之三:学以致用环节。设计了一例一问题,一练习题组的形式,由简单基础题逐渐增难,循序渐进强化乘方意义的理解,书写、计算。成功实现的教学的基本目标。
成功之四:恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,有效地吸引学生的注意力。多媒体设备的使用不仅大大地提高了课堂容量,而且还可以展示学生的作品(课堂练习的解答),及时纠正学生书面表达的错误,规范解题格式,改掉小学生重结果轻过程,解题格式不规范,解题步骤混乱等不良现象。同时也营造了宽松、和谐的课堂氛围、让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。
成功之五:随堂练习,巩固新知的环节循序渐进、层次分明。第一步:基础例题帮助学生正确寻找底数和指数,第二步提高练习,议一议,提高学生的能力,更好地理解乘方的意义,为下一节有理数的混合运算做好准备。第三步:测评练习极好的活跃了课堂氛围,增强的学生的竞争意识。
成功之六:参透了传统的数学文化,将古今知识奇闻妙趣有机结合在一起,拓展了学生的视野,开阔了学生的思维,让学生领略了古今中外数学的神奇、简洁。
不足之处
不足之一:“探究新知:启发引导,探索规律,得出概念”环节中,没有安排学生动手亲自操作,对学生感受能力会不太深刻。
不足之二:对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对各个学生具体情况谅解不够深入,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。
不足之三:回顾思考比较生硬,不够艺术化,教学尽量更加生动形象。
有理数的乘方教案 篇5
教学目标
1?理解有理数乘方的概念,掌握有理数乘方的运算;
2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3?渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1?求n个相同因数的积的运算叫做乘方?
2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3.我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)20xx,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?
四、作业
1?计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2?填表:
3?a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4?当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .
5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
课堂教学设计说明
1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的.体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?